Role of the VSSA in the NanoDefine decision flow scheme

Dan Hodoroba (BAM) & Hubert Rauscher (JRC)

- VSSA concept
- VSSA as measured by BET
- Results of the NanoDefine evaluation, selected examples on real-world materials
- Recommendations for application of the EC definition of nanomaterial
Measurement techniques (MT) able to probe the size of nanoparticles

- Imaging (EM, SPM)
- PTA/DUM
- TRPS
- sp ICP-MS

- FFF
- AC / CA – incl. CLS and AUC
- DMAS

Screening methods (tier 1)

- DLS
- SAXS
- USSP
- XRD
- ALS, incl. LD

Confirmatory methods (tier 2)

- BET for VSSA
VSSA

- **Volume specific surface area**, \(S/V \) [m\(^2\)/cm\(^3\)]

- Minimum dimension can be extracted: \(d_{\text{min}}^{VSSA} = \frac{2D}{VSSA} \)

- \(D = \) nr. of small dimensions: from descriptive SEM

BET

- Brunauer-Emmett-Teller theory for physical adsorption of gas molecules on solid surface
- widely used, cost-effective
- no sample preparation
- standardized (ISO 9277:2010)
- traceable
- result: **Specific Surface Area** [m\(^2\)/g]
- \(\text{SSA} \times \rho = VSSA \)
Experimental MT evaluation (incl. BET)
Example #1: pigment Y83, transparent

BET equiv. min. size

![Image of pigment Y83](image_url)

particle size, nm

no. weighted sum fct. Q_0

- TEM
- SEM
- PTA
- dAC-turb
- cAC-turb
- DLS (2x)
- SAXS
- ALS
Experimental MT evaluation (incl. BET)

Example #2: pigment Y83, opaque

BET equiv. min. size

no. weighted sum fct. Q_0

particle size, nm

TEM
SEM
PTA
dAC-turb
cAC-turb
DLS (2x)
ALS (2x)
Experimental MT evaluation (incl. BET)

Example #3: BaSO₄ f
Experimental MT evaluation (incl. BET)

Example #4: BaSO₄ uf
Experimental MT evaluation (incl. BET)

Example #5: Kaolin

BET equiv. min. size

No access of EM to the min. dimension of platelets!!

Particle size, nm

No. weighted sum fct. Q₀

TEM, SEM, PTA, DEMA, cAC-turb, cAC-RI, DLS, SAXS, ALS (2x)
What can EM offer? Example #5 (Kaolin) revisited

Access of EM to the min. dimension of platelets: possible!
Experimental MT evaluation (incl. BET)

Example #6: coated TiO$_2$

![Coated TiO$_2$](image)

EDX

- Porous coating

BET equiv. min. size
VSSA Evaluation as a *Tier 1* method - VSSA Correlation to EM

- 26 real-world materials (*NanoDefine* + more):
 - Various compositions
 - Strong agglomeration
 - Broad size range: 10 nm – 4 µm
 - 50% polydispersity

- **VSSA-derived smallest dim.**:
 \[d_{\text{min}}^{_{\text{VSSA}}} = \frac{2D}{VSSA} \]

- e-Microscopy: *via* Feret

NanoDefine Final Outreach Event, Brussels, 19-20 September 2017
Reliable nanomaterial classification of powders using the volume-specific surface area method

Wendel Wohlleben · Johannes Mielke · Alvise Bianchin · Antoine Ghanem · Harald Freiberger · Hubert Rauscher · Marion Gemeinert · Vasile-Dan Hodoroba

Received: 24 May 2016 / Accepted: 4 January 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract The volume-specific surface area (VSSA) of a particulate material is one of two apparently very different metrics recommended by the European Commission for a definition of “nanomaterial” for regulatory purposes: specifically, the VSSA metric may classify nanomaterials and non-nanomaterials differently than the median size in number metrics, depending on the

Here we evaluate the extent of agreement between classification by electron microscopy (EM) and classification by VSSA on a large set of diverse particulate substances that represent all the anticipated challenges except mixtures of different substances. EM and VSSA are determined in multiple labs to assess also the level of reproducibility. Based on the results obtained on highly
Comparison VSSA by BET to EM

\[\text{\(d_{\text{min}_{\text{VSSA}}}\) vs. \(\text{\(Feret}_{\text{min}}\)} \]

\[\text{BET} \rightarrow (M)\text{SSA} \quad \left[\frac{m^2}{g} \right] \]

\[\text{SSA} \times \rho = \frac{S}{V} = \text{VSSA} \quad \left[\frac{m^2}{m^3} \right] \]

\[\text{\(d_{\text{min}_{\text{VSSA}}} = \linebreak \frac{2D}{\text{VSSA}} \)} \]

<table>
<thead>
<tr>
<th>Material</th>
<th>(D)</th>
<th>(d_{\text{min}_{\text{VSSA}}})</th>
<th>(\text{STD})</th>
<th>(d_{\text{min}_{\text{EM}}})</th>
<th>(\text{STD})</th>
<th>(\text{(d_{\text{min}_{\text{VSSA}}}) OK?})</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic pigment (transparent)</td>
<td>2</td>
<td>100</td>
<td>40</td>
<td>3</td>
<td>40</td>
<td>1</td>
<td>OK</td>
</tr>
<tr>
<td>Organic pigment (opaque)</td>
<td>2</td>
<td>26</td>
<td>153</td>
<td>7</td>
<td>1.89</td>
<td>32</td>
<td>OK</td>
</tr>
<tr>
<td>BaSO₄ (fine grade)</td>
<td>3</td>
<td>11</td>
<td>541</td>
<td>97</td>
<td>249</td>
<td>35</td>
<td>OK</td>
</tr>
<tr>
<td>BaSO₄ (ultrafine grade)</td>
<td>3</td>
<td>162</td>
<td>37</td>
<td>0</td>
<td>27</td>
<td>7</td>
<td>OK</td>
</tr>
<tr>
<td>MWCNT</td>
<td>2</td>
<td>518</td>
<td>8</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>OK</td>
</tr>
<tr>
<td>Nanosteel</td>
<td>1</td>
<td>49</td>
<td>41</td>
<td>4</td>
<td>93</td>
<td>OK</td>
<td>Platelets, SEM is not measuring smallest dimension</td>
</tr>
<tr>
<td>CaCO₃ (fine grade)</td>
<td>2</td>
<td>15</td>
<td>259</td>
<td>6</td>
<td>157</td>
<td>3</td>
<td>OK</td>
</tr>
<tr>
<td>Kaolin</td>
<td>1</td>
<td>42</td>
<td>48</td>
<td>2</td>
<td>4</td>
<td>OK</td>
<td>Platelet thickness by SEM, measured on upright standing particles</td>
</tr>
<tr>
<td>Coated TiO₂</td>
<td>3</td>
<td>58</td>
<td>102</td>
<td>2</td>
<td>186</td>
<td>2</td>
<td>Nearly false positive, Coating porosity</td>
</tr>
<tr>
<td>Zedite powder</td>
<td>3</td>
<td>803</td>
<td>7</td>
<td>118</td>
<td>15</td>
<td>False positive, Internal pores</td>
<td></td>
</tr>
<tr>
<td>Basic methacrylate copolymer</td>
<td>3</td>
<td>1</td>
<td>4044</td>
<td>317</td>
<td>2014</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Fumed SiO₂</td>
<td>3</td>
<td>459</td>
<td>13</td>
<td>0</td>
<td>12</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>FeO₁₀H₂ Pigment Yellow 42</td>
<td>2</td>
<td>326</td>
<td>12</td>
<td>1</td>
<td>20</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>TiO₂ Rutile</td>
<td>3</td>
<td>61</td>
<td>98</td>
<td>5</td>
<td>210</td>
<td>False positive, Coating porosity</td>
<td></td>
</tr>
<tr>
<td>Cu/Zn Pigment Metal 2</td>
<td>1</td>
<td>35</td>
<td>56</td>
<td>17</td>
<td>4000</td>
<td>OK</td>
<td>Platelets, SEM is not measuring smallest dimension</td>
</tr>
<tr>
<td>Fe₂O₃ Pigment Red 101</td>
<td>3</td>
<td>44</td>
<td>136</td>
<td>7</td>
<td>248</td>
<td>OK</td>
<td>Complex shape: TEM hard to assign smallest dimension</td>
</tr>
<tr>
<td>Co₃O₄, Al-Co-Blue</td>
<td>3</td>
<td>33</td>
<td>181</td>
<td>8</td>
<td>527</td>
<td>OK</td>
<td>Not dispersible, TEM cannot assign particles. Therefore excluded from analysis,</td>
</tr>
<tr>
<td>TiO₂ Anatase</td>
<td>3</td>
<td>35</td>
<td>173</td>
<td>7</td>
<td>130</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Azo Pigment Yellow 83</td>
<td>2</td>
<td>86</td>
<td>47</td>
<td>9</td>
<td>47</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Further industrial materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigment Yellow 42 (transparent)</td>
<td>2</td>
<td>324</td>
<td>12</td>
<td>10</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigment Red 101</td>
<td>2</td>
<td>419</td>
<td>20</td>
<td>9</td>
<td>0</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Pigment Yellow 159</td>
<td>3</td>
<td>43</td>
<td>141</td>
<td>150</td>
<td>150</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Pigment Red 254 (opaque)</td>
<td>3</td>
<td>24</td>
<td>245</td>
<td>233</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigment Red 254 (transparent)</td>
<td>1</td>
<td>153</td>
<td>13</td>
<td>36</td>
<td>OK</td>
<td>Platelets, TEM is not measuring smallest dimension</td>
<td></td>
</tr>
<tr>
<td>CaCO₃</td>
<td>1</td>
<td>49</td>
<td>123</td>
<td>20</td>
<td>10</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Pigment Blue 15:4</td>
<td>2</td>
<td>103</td>
<td>39</td>
<td>30</td>
<td>10</td>
<td>OK</td>
<td></td>
</tr>
</tbody>
</table>

NonNM | **NM**

EU

BAM
Comparison of VSSA by BET to EM

<table>
<thead>
<tr>
<th>Material</th>
<th>D</th>
<th>VSSA (BET)</th>
<th>$d_{\text{min}}^{\text{VSSA}}$</th>
<th>Std</th>
<th>$d_{\text{min}}^{\text{EM}}$ (Conv.)</th>
<th>Std</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic pigment (transparent)</td>
<td>2</td>
<td>100</td>
<td>40</td>
<td>3</td>
<td>40</td>
<td>1</td>
<td>Valid</td>
</tr>
<tr>
<td>Organic pigment (opaque)</td>
<td>2</td>
<td>26</td>
<td>153</td>
<td>7</td>
<td>189</td>
<td>32</td>
<td>Valid</td>
</tr>
<tr>
<td>BaSO$_4$ (fine grade)</td>
<td>3</td>
<td>11</td>
<td>541</td>
<td>97</td>
<td>249</td>
<td>35</td>
<td>Valid</td>
</tr>
<tr>
<td>BaSO$_4$ (ultrafine grade)</td>
<td>3</td>
<td>162</td>
<td>37</td>
<td>0</td>
<td>27</td>
<td>7</td>
<td>Valid</td>
</tr>
<tr>
<td>MWCNT</td>
<td>2</td>
<td>518</td>
<td>8</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>Valid</td>
</tr>
<tr>
<td>Nanosteel</td>
<td>1</td>
<td>49</td>
<td>41</td>
<td>4</td>
<td>Conv. EM: 155</td>
<td>93</td>
<td>Platelets, SEM is not measuring smallest dimension</td>
</tr>
<tr>
<td>CaCO$_3$ (fine grade)</td>
<td>2</td>
<td>15</td>
<td>259</td>
<td>6</td>
<td>157</td>
<td>3</td>
<td>Valid</td>
</tr>
<tr>
<td>Kaolin</td>
<td>1</td>
<td>42</td>
<td>48</td>
<td>1</td>
<td>Conv. EM: 124</td>
<td>4</td>
<td>Platelet thickness by SEM, measured on upright standing particles</td>
</tr>
<tr>
<td>Coated TiO$_2$</td>
<td>3</td>
<td>59</td>
<td>102</td>
<td>2</td>
<td>184</td>
<td>2</td>
<td>Nearly false positive</td>
</tr>
<tr>
<td>Zeolite powder</td>
<td>3</td>
<td>803</td>
<td>7</td>
<td>1</td>
<td>118</td>
<td>15</td>
<td>False positive</td>
</tr>
<tr>
<td>basic methacrylate copolymer</td>
<td>3</td>
<td>1</td>
<td>4044</td>
<td>317</td>
<td>2014</td>
<td></td>
<td>Valid</td>
</tr>
</tbody>
</table>
NanoDefine decision scheme for powders applied on a training set of industrial materials

VSSA \((d_{\text{min}}_{\text{VSSA}})\) vs. EM \((\text{Feret}_{\text{min}})\)

- **VSSA** (VSSA) 100nm cutoff = \(60 \text{ m}^2 \text{ cm}^{-3}\)
- **EM** (Feret)

Graph

- **true \(D\)**
- **\(t\)-plot**

Legend
- **Perfect correlation**
- **Factor 2.5 mismatch**
- **Factor 10 mismatch**
- **NanoDefine**
- **Eurocolour/JRC**

Equations
- \(d_{\text{min}}_{\text{VSSA}} = \frac{D}{3} \cdot \frac{1}{VSSA} \cdot 100\text{nm}\)

NanoDefine Final Outreach Event, Brussels, 19-20 September 2017
NanoDefine decision scheme for powders

1. **Measurement as powder**
 - BET-Measurement + skeletal density

2. **VSSA**
 - Yes: Non-Nanomaterial by EC definition
 - No: Determination of shape (descriptive EM)

3. **Determination of shape (descriptive EM)**
 - Yes: accept homogeneous
 - No: Non-Nanomaterial by EC definition

4. **Shape**
 - d_{min,VSSA} < 250 nm
 - d_{min,VSSA} < 100 nm

5. **Borderline:**
 - 100 nm < d_{min,VSSA} < 250 nm
 - Spherical shape (aspect ratio <3:1) and 24 < VSSA < 60 m²/cm³ or Rod (aspect ratio >3:1:1) D=2 and 16 < VSSA < 40 m²/cm³ or Platelet (aspect ratio >3:3:1) D=1 and 8 < VSSA < 20 m²/cm³

6. **Nanomaterial by EC Definition**
 - x_{50} ≤ 100
 - Tier 2 E-Microscopy
 - x_{50} > 100

For irregular/mixture of shapes apply most conservative cut-off value.

\[d_{min,VSSA}(D) = \frac{2D}{VSSA} \]
NanoDefine decision scheme for powders applied on a test set of industrial materials

VSSA (+ descriptive/quick SEM) for screening

VSSA screening, first step (assuming D=3)

VSSA screening, second step (best estimate for D)
Conclusions

• VSSA_{BET} is a simple and reliable method
• As integrated in the decision flow scheme it can help to classify a material (powder) as **nano or non-nano**

• Conditions for use as proxy in the decision flow scheme:
 • Non-norderline materials (d_{min, VSSA} < 100 nm or d_{min, VSSA} > 250 nm)
 • Porous and coated materials: to be treated with care, *i.e.* combined with EM analysis or more advanced BET analysis (e.g. *t*-plot)
 • Monomodal size distribution
Acknowledgement

- Dr. Wendel Wohlleben (BASF, Ludwigshafen)
- Dr. Johannes Mielke (BAM, Berlin)
- Dr. Marion Gemeinert (BAM, Berlin)

www.NanoDefine.eu

This project has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement No 604347